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We introduce Region of Interest Contrast Enhancement (RICE) to identify focal densities in mammograms. 

It aims to help radiologists: 1) enhancing the contrast of mammographic images; and 2) detecting re- 

gions of interest (such as focal densities) that are candidate masses potentially masked behind dense 

parenchyma. Cancer masking is an unsolved issue, particularly in breast density categories BI-RADS C 

and D. RICE suppresses normal breast parenchyma in order to highlight focal densities. Unlike methods 

that enhance mammograms by modifying the dynamic range of an image; RICE relies on the actual tis- 

sue composition of the breast. It segments Volumetric Breast Density (VBD) maps into smaller regions 

and then applies a recursive mechanism to estimate the ‘neighbourhood’ for each segment. The method 

then subtracts and updates the neighbourhood, or the encompassing tissue, from each piecewise con- 

stant component of the breast image. This not only enhances the appearance of a candidate mass but 

also helps in estimating the mass density. In extensive experiments, RICE enhances focal densities in all 

breast density types including the most challenging category BI-RADS D. Suitably adapted, RICE can be 

used as a precursor to any computer-aided diagnostics and detection system. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Brest cancer is the second most frequently diagnosed cancer 

n women. In 2020, in the USA alone, there will be an esti- 

ated 276,480 new cases of breast cancer in women (and 2620 

n men), with a projected 42,690 deaths ( Siegel et al., 2020 ). This

ontinues the increase over 2017 (252,710 new cases and 40,610 

reast cancer deaths) ( DeSantis et al., 2017 ). Breast cancer accounts 

or 30% of all female cancers. In the developed world it is the 

econd leading cause of cancer death among women (after lung 

ancer), whereas it is the leading cause in less developed coun- 

ries( Romualdo et al., 2013 ; Siegel et al., 2015 )( Torre et al., 2015 ).

arly diagnosis improves prognosis, reduces the cost of treatment, 

nd increases available treatment options. As well, it is estimated 

hat for the year 2020-21 there will be an overall 27% increase in 

he cost of cancer care in the US, raising spending from $124.57Bn 

o $157.77Bn. Specifically, the cost of breast cancer care is set to 

ncrease by 32%. In response to all of these developments, better 

nd more cost-effective imaging techniques, including reliable im- 

ge enhancement methods, are crucial for maintaining or even re- 

ucing the economic burden of breast cancer. 
∗ Corresponding author. 
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Though a range of imaging modalities are used in clinical prac- 

ice for the detection and work-up of breast cancer, including ul- 

rasound, MRI, CT, and Tomo(synthesis) DBT, it remains the case 

hat digital x-ray mammography is overwhelmingly the most com- 

only used. It is the basis for all state and privately funded screen- 

ng programs in the UK, US, EU and beyond. Such a program has 

elped the UK attain the second-lowest predicted breast cancer 

ortality rate in 2020 (after Spain), starting from the highest one 

n 1970 ( Tabár & Dean, 1982 )( Carioli et al., 2017 ). Mammography

s relatively low-cost, practical for large population screening, and 

here is strong evidence that it has decreased the mortality rate of 

reast cancer by more than 30% ( Tabár et al., 2011 ). 

To motivate the method introduced in this paper, screening 

ammography depends critically on the visibility of tumours, 

hich may be surrounded by adipose or fibroglandular tissue. The 

ppearance of a mammogram, considered as an image, varies con- 

iderably among women and depends upon the imaging param- 

ters, tissue characteristics, and the response of different breast 

issues to x-ray attenuation. Dense tissue, such as tumours and 

tromal tissue, has high x-ray attenuation and appears bright on 

 mammogram. Similarly, fatty tissue has low attenuation and ap- 

ears dark. However, since mammography is projective, tumours 

ay be partly or completely concealed by normal dense stromal 

issue, and the greater the amount of such tissue, the greater the 

isk that a tumour may be “masked”. Not only may bright stro- 

al tissue mask a tumour, but it also reduces image contrast, fur- 

https://doi.org/10.1016/j.media.2021.102043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102043&domain=pdf
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her increasing the challenge of detecting abnormalities in a dense 

reast. Mammography is currently estimated to miss 20% of in- 

asive breast cancers, a number which may be reduced by the 

se of computer-aided detection or diagnostic systems ( Le et al., 

019 )( Sasaki et al., 2020 )( Rodríguez-Ruiz et al., 2019 ); but such

lgorithms also tend to have a poorer performance for dense 

reast (e.g. BI-RADS 4). Women with dense breast not only have 

 higher risk of their breast cancers being missed at screening; 

ut are also at significantly higher risk of developing breast can- 

er( Schreer, 2009 )( Ghosh et al., 2012 )( Van Goethem et al., 2004 ).

n short, it is often difficult to detect Regions of Interest (ROIs) that 

ay correspond to a lesion and to assess regional morphology. 

In this paper, we propose a method based on the breast con- 

ents to improve the visibility of potential ROIs by adaptively and 

teratively enhancing the contrast to their surroundings. We show 

ts effectiveness by applying it to a database of mammograms as- 

embled for the European project ASSURE (Adapting Breast Cancer 

creening Strategy Using Personalised Risk Estimation,) and con- 

erted to quantified Volumetric Breast Density (VBD) maps by the 

olpara Health software ( Highnam et al., 2010 ; Teo et al., 2016 ).

e note that there are no structural differences between a regular 

ammogram (intensity map, where each pixel carries an intensity 

alue representative of the tissue x-ray attenuation) and a VBD im- 

ge. Using density maps as we do enables confirmation that the 

egions enhanced by our method are indeed dense (Volpara den- 

ity values per pixel), and thus are ‘focally dense’. Along with the 

ontrast enhancement of a mammogram, we particularly aim to 

nhance the visibility of cancers that are potentially masked be- 

ind dense parenchyma. 

This paper is based on our previous work (Faraz Janan et al., 

015 ), in which we proposed a basic system for the region of in-

erest enhancement, which has been significantly enhanced. 

.1. Masking and focal densities 

Masking in relation to mammographic density remains one of 

he most challenging issues in diagnostic mammography. Complex 

atterns formed by focal densities, those linked to masking, result 

rom multi-layered and multi-oriented tissue composition in mam- 

ographic images( Aiello et al., 2005 ). To date, detecting masking 

as been largely beyond human visual perception. Masking con- 

eals tumours and obscure associated cancerous texture, making it 

ifficult to detect cancers at an early stage particularly in dense 

reast( Chiu et al., 2010 ). We contend that focal densities are key 

o enabling the detection of masked tumours and establish focal 

symmetry along with its subtypes. It is core to the guidelines on 

reast cancer screening issued by the American College of Radi- 

logy (ACR) in the BI-RADS 5th edition. The BI-RADS lexicon is a 

ictionary of descriptive terms used to describe a mammographic, 

ltrasound, or MRI finding ( Spak et al., 2017 ). These protocols are 

sed in routine clinical practice worldwide. 

Increasingly, MRI is suggested to find cancers in dense breast 

 Longo, 2019 ). Van Gils ( Bakker et al., 2019 ) showed in the DENSE

rial that interval cancers are more common in dense breast for 

hich there is a higher chance of cancer masking. The study 

howed that supplemental MRI screening reduced the interval- 

ancer rate from 5.0 per 10 0 0 screenings in the control group to 

.5 per 10 0 0 screenings in the MRI-invitation group. Whereas it 

educed the interval-cancer rate in the supplemental MRI group 

y 1.3 per 10 0 0 person-years. MRI also produced a reduced false- 

ositive rate of 8% (79.8 per 10 0 0 screenings) and only 26.3% of 

atients who had a breast biopsy following MRI had breast cancer. 

owever, routine supplemental MRI investigations are infeasible 

rimarily because of the relatively limited availability of MRI scan- 

ers and heavy usage that is made of them. This is compounded 

n many parts of the world by the higher cost of an MRI (typically 
2 
-5 times that of a mammogram). For all of these reasons, we have 

nvestigated mechanisms to identify focal densities that are poten- 

ial tumours masked behind dense parenchyma and whose clinical 

ses would include as a stratification step in the diagnostic path- 

ay. 

Statistical and texture based measures have been used to quan- 

ify cancer masking. Karssemeijer et al. ( Holland et al., 2017 ) used 

ercent density area (PDA), percent density volume (PDV) and the 

ense tissue masking model (DTMM) to assess the risk of cancer 

asking. They used 111 interval cancers collected over a period of 

2 months after the initial examination against 1110 selected nor- 

al cases without cancer. Based on statistical measures they cate- 

orised women into high-medium-low risk categories. Yaffe et al. 

 Mainprize et al., 2019 ) used a cohort of 67 nonscreen-detected 

detected via other means after a negative mammogram) and 147 

creen-detected cancers invasive cancers A mechanism was de- 

ised to study the distribution of dense tissue using statistical and 

exture measures. They achieved an AUC of 0.75 [0.67–0.82] for 

redicting the risk of masking while using logistic regression. Both 

f these studies applied their models to Volpara volumetric density 

aps similar to those that we have used in our study. Yaffe et al. 

 Mainprize et al., 2014 )( Alonzo-Proulx et al., 2019 ) also developed 

uantification metrics for possible use in stratified breast cancer 

creening using masking risk predictions. However, this was not 

imed at improving the visibility of masked tumours, or unmask 

nd quantify ROIs. 

In this paper, we extend our previously-reported Region of In- 

erest Contrast Enhancement (RICE) method to identify focal den- 

ities in mammograms. RICE finds focal densities by enhancing the 

ppearance of dense tissue in mammograms. When applied to a 

ensity map (in the present case, generated by Volpara’s breast 

ensity algorithm, VBD, though the method is applicable to any 

uch density map), it also gives an approximation of the mean tis- 

ue density of an ROI. It generates a mammogram with contrast- 

nhancement. 

Our method is perhaps best compared with contrast enhance- 

ent methods, most notably CLAHE (Constrast-Limited Adaptive 

istogram Enhancement), that have been widely applied to mam- 

ograms. Such enhancement methods manipulate the intensity 

or density) histogram, modifying the dynamic range, scaling of 

egional or global intensities histograms, and/or adjusting the 

ontrast window of a digital mammogram ( Akila et al., 2015 ). 

istogram-based methods adapt the histogram of the entire im- 

ge (or a segmented portion thereof), rather than analysing local 

egions that may correspond to focal densities. 

In contrast, RICE suppresses normal parenchyma, irrespective 

f: the intensity distribution, the BI-RADS classification (if known), 

nd texture information in an image. Applied to density maps, it 

stimates the overall density for all regions inside the breast that 

re not considered ‘normal’ parenchyma (relative to that breast); 

uch as masses, highly dense tissue, and structural spicules or 

tromal ducts. RICE facilitates finding ROIs in dense breast, where 

stablished segmentation methods struggle. Fig. 1 shows a false- 

olour representation of the application of RICE to the (noisy) sur- 

ace of a VBD map. The ROI becomes a candidate mass, enhanced 

hen we subtract the normal parenchyma or surrounding tissue. 

he upper image shows the VBD surface before applying RICE. The 

ower image shows the image enhanced by RICE. The vertical axis 

hows the amount of dense breast tissue at each location (x,y). The 

eak highlighted in red is a mass that has a maximum density of 

2mm in the original image. After applying RICE, the density of 

he mass reduces closer to 5mm due to subtraction of the normal 

arenchyma surrounding it. The overall density of the mass has re- 

uced to represent its actual composition; however, its appearance 

as been considerably enhanced. Note that the second thin, sharp 

pike to the left of the mass is an enhanced microcalcification. 
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Fig. 1. A VBD map before (top) and after (bottom) the application of RICE. 
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.2. Image enhancement methods 

Several image enhancement methods for mammography have 

een published. As noted above, most such methods either manip- 

late the image histogram or apply a smoothing filter. To the best 

f our knowledge, none quantifies the content of dense tissue or 

 potential mass. In this section, we review several methods that 

ave been developed for mammographic image improvement. 

Early work ( Sivaramakrishna et al., 20 0 0 ) on enhancement 

ethods include unsharp masking (Jong Kook Kim et al., 

997)( Lure et al., 1996 ), contrast-limited adaptive histogram equal- 

zation ( Kim, 1997 )( Pizer et al., 1987 ), region-based contrast en- 

ancement ( Morrow et al., 1992 ) and wavelet transformations 

 Laine et al., 1994 ). Most enhancement methods aim at better de- 

ectability of microcalcifications. In performance terms, there is 

 stark contrast between the approaches of enhancing mammo- 

raphic regions that are potentially masses, and those for de- 

ecting calcifications. In most cases, the approaches designed for 

ne type of enhancement, masses or microcalcifications, tend to 

mooth or ignore the other ( Ji et al., 1994 ). Cheng et al. ap-

lied an entropy-based transformation to take an image into 

he Fuzzy domain to measure the local contrast and then en- 

ance it ( Bartella et al., 2006 ), similar approaches reported in 

ther methods ( Salmeri et al., 2008 )( Lucht et al., 20 0 0 )( Ball &

ruce, 2007 )( Bhateja et al., 2017 )( Ball & Bruce, 2007 )( Wu et al.,

013 )(A. Jain et al., 2013 )( Cheng & Xu, 20 0 0 ). This, in essence,

s very similar to adaptive contrast enhancement methods that 
3 
tretch the contrasts of mammographic regions in a local context 

 Rangayyan et al., 1997 ). Wavelets can achieve similar results by a 

ulti-scale frequency analysis approach, thus investigating individ- 

al components of a mammogram and highlighting the frequencies 

f interest ( Tang et al., 2009 ). A different approach, inspired by 

he human visual system (HVS), reduces the need for a separate 

egmentation method. It uses the second derivative to highlight 

dge information by 2-tier image decomposition (Y. Zhou et al., 

010 ). Both the wavelet transform-based method and the HVS 

odel do not work well in dense mammograms (such as BI-RADS 

) where contrast is reduced and where ROIs do not have well- 

efined edges, thus lacking the high-frequency component. Filter- 

ased approaches essentially regard image enhancement in mam- 

ography as denoising ( Laine & Zong, 1996 )( Matsuyama et al., 

013 )( Gorgel et al., 2010 )( Mencattini et al., 2008 )( Romualdo et al.,

013 )( Scharcanski & Jung, 2006 )( Mencattini et al., 2008 ) (i.e. a

roxy for better visualisation) from an “as-it-is” image. Such an ap- 

roach does not take into account the breast thickness, tissue den- 

ity, focal density and as a consequence cancer masking . Most such 

tudies show that a significant difference exists in reviewer prefer- 

nce for images with masses and images with microcalcifications 

 Moradmand et al., 2012 )( Sivaramakrishna et al., 20 0 0 ). 

The most common type of mammographic enhancement is 

ased on probabilistic histogram equalisation ( Pisano et al., 20 0 0 ). 

ore basic methods analyse the intensity distribution of the pix- 

ls across the image to determine the distribution on the spread. 

uch methods can work well on BI-RADS A and D, where the ex- 

ected intensity distribution is often approximately uniform. How- 

ver, they struggle with BI-RADS categories B and C where mam- 

ograms tend to have intensity distributions that are closer to 

imodal. Adaptive histogram methods (for example CLAHE) ad- 

ress this issue by dividing the image into sections of variable 

ntensities ( Pisano et al., 20 0 0 ). The method was originally de- 

igned for facial image enhancement, but its variants were later 

pplied to mammography. Adaptive histogram equalisation meth- 

ds do not preserve the brightness of the image. Brightness Pre- 

erving Bi-Histogram Equalisation (BBHE) aims to divide the image 

nto two parts, based on the brightness levels. The method gen- 

rates two images based on brightness thresholds and then apply 

daptive equalisation to each separately. Subsequently, both parts 

re combined, which largely preserves brightness ( Kim, 1997 )( Chen 

 Ramli, 2003b )( Chen & Ramli, 2003a ). However, it is not clear 

hether or not BBHE was effective in the case of craniocaudal 

CC) view, as opposed to mediolateral oblique (MLO) views showed 

n the paper ( Akila et al., 2015 ) where the bi-model intensity 

istributions are evident. In Recursive Mean-Separate Histogram 

qualisation (RMSHE) ( Chen & Ramli, 2003a ), Chen et al separated 

he mean intensity of a mammogram to preserve the brightness 

f the two sub-images, following the essence of BBHE ( Chen & 

amli, 2003b ), but in a recursive fashion that aims to further en- 

ance performance. 

Image filtering and histogram equalisation methods were pop- 

lar for use with digitised mammograms where noise removal, 

maging artefacts and the pixel resolution of digitised mammo- 

rams were the main challenges. However, with the latest digital 

mage acquisition scanners, the problems that these methods ad- 

ress have essentially been overcome. The new trends of mam- 

ographic image enhancement are based on the qualitative im- 

rovement of images in terms of their clinical value (i.e. visibility 

f cancers) as we explain in the following section, and not just a 

umerical metric for image enhancement (such as SNR, CNR, hazi- 

ess, fractal dimension score etc.). 

We have drawn a clear distinction between copious methods 

hat enhance a mammogram by adapting to a histogram of in- 

ensities, as opposed to the localised, regional enhancement that 

s the basis for RICE. Though the use of histograms is widespread 
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Fig. 2. a: Comparison of induced blurred (blue) vs un-blurred (red) regions in BI- 

RADS B. b: Comparison of induced blurred (blue) vs un-blurred (red) regions in 

BIRADS C. 
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hroughout image analysis, a fundamental limitation of such meth- 

ds is the following. Consider any image I (or region within an im- 

ge) and create from it an image J by randomly scrambling the 

ixel values of I . Evidently, the two images I, J will not in gen-

ral resemble in the least each other. However, their histograms are 

dentical. This is the case whether I is a conventional mammogram 

mage or a VBD density image like those in the paper. Though algo- 

ithms such as CLAHE have found widespread application, the in- 

eraction between global aspects of their behaviour (adaptive his- 

ogram equalisation) and the local aspect (contrast limited) often 

ives unpredictable results, as has been noted frequently in the im- 

ge processing literature and which has led to a continuing stream 

f refinements to CLAHE. 

There is a second point to make here. Contrast enhancement 

pplied to mammography has to contend with varying composi- 

ion of the breast (light adipose parenchyma resulting in haziness), 

r conversely varying response to blur in different BIRADS density 

ategories. Fig. 2 a and 2 b show BIRADS B and C dense breast re-

ponding very differently to induced blurred. The effect is more 

ggressive on BIRADS B as compared to BRIADS C. This infers that 

he effect of applying low-pass filtering techniques and contrast 

tretching would affect these two categories very differently. 
4 
.3. ‘New’ context of mammographic image enhancement 

Over the past decade, due primarily to advances in the tech- 

ology of digital mammographic scanners, assessment of mam- 

ographic image enhancement has advanced beyond sensitivity 

taken for granted), towards specificity (how many cancers may be 

issed?). As a result, the context for use of enhancement methods 

as also changed. The risk of missing cancer (MISS-X) depends on 

everal different factors, that we will summarise here but which 

re well explained in “20/20” ( Ng & Lau, 2015 ): 

MISS-1: The cancer is not visible because it is masked by dense 

issue. 

MISS-2: The cancer is not seen, possibly due to distraction by 

ther dense tissue. 

MISS-3: The cancer is seen, but it is interpreted wrongly due to 

verlapping tissues. 

MISS-4: The cancer is not present in the image. 

MISS-5: Cancer is present, but not visibly discernible. 

With a few exceptions ( Mainprize et al., 2016 )( Mainprize et al., 

018 )( Hinton et al., 2016 )( Aghaei et al., 2017 ), there appears to

e a limited understanding of focal density and masking in the 

ammographic image analysis literature. Our method aims to 

educe MISS-1 and MISS-2, though, because of the overall im- 

roved contrast and highlighted focal densities, we are confident 

hat it helps reduce MISS-3. MISS-4 is not an image process- 

ng issue; nevertheless, good positioning measures will improve it 

 Peart, 2014 )( Popli et al., 2014 ). For MISS-5, image enhancement 

ollowed by more informed machine learning approaches may use- 

ully be combined ( Le et al., 2019 ). comprises iterative neighbour- 

ood estimation, subtraction, and merging that subtracts the en- 

ompassing tissue surrounding focally dense regions. At the same 

ime, RICE detects and iteratively suppresses normal parenchyma. 

n theory, if a density map does not contain any dense regions, 

he breast region in the contrast-enhanced image should be al- 

ost ‘blank’. RICE is particularly effective on volumetric density 

aps generated by an increasing number of commercially-available 

ethods, for example, Quantra ( Volumetric & Software, 2010 ; 

ang et al., 2012 ); Volpara (F. Janan et al., 2014 ; Teo et al., 2016 );

nd Densitas (Abdolell et al., 2017). These provide either estima- 

ion of tissue density or an approximation to x-ray attenuation ab- 

orbed at each point of a mammographic image, and this helps not 

nly to detect but also to quantify and further standardise focal 

ensity scores. Note that there does not currently exist a clinical 

tandard against which to quantify a focal asymmetry or a focal 

ensity. Lacking such a standard, which inevitably limits valida- 

ion, we have resorted to the output of software for density es- 

imation, primarily because it is a physical measurement of breast 

issue, and in part, because numerous papers have shown a link 

o breast cancer detectability and risk. More specifically, we have 

sed VBD maps because it is multi-vendor, widely available (and 

vailable to us), has been used in hundreds of studies of breast 

ensity, because of its positive impact in assessing breast cancer 

isk using volumetric mammographic density, and on the perfor- 

ance of breast cancer screening program using full-field digital 

ammography ( Chiu et al., 2010 ). We stress, however, that RICE 

an be applied straightforwardly to DICOM regular mammographic 

mages. We implement RICE in 5 steps. 

.4. Segmentation 

First, we segment the breast region (beneath the skin-line) into 

maller regions that share a similar texture and density. Consider 

he volumetric density map as a surface plot V (x ) , that has a high-

requency element corresponding both to stromal tissue and noise. 

ince we are interested in the ROI as a whole and not the added 

igh-frequency component, we approximate V ( ̄x ) locally over 
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Fig. 3. (a) A VBD map; (b) Piecewise constant approximation of SLIC segmented 

regions using mean values, ( ̄x ) . Using red arrows we highlight the mean density of 

two example regions; (c) the correspondence between the pixel density values in 

(a) and (b) extracted along the yellow line in the VBD map. 

Fig. 4. (a) The combined mask R + 
i 

of a segmented region R i along with II diffused 

region highlighting immediate neighbourhood or the surrounding tissue in the or- 

ange colour N( R i ) ; (b) Mean thickness of the tissue μ and its neighbourhood μN 
i 

. 

x

r

f

1

 

p

t

f

maller regions. There are several ways to do low-level descrip- 

ive segmentation ( Srinath, 1992 )( Vala & Baxi, 2013 )( Morar et al.,

012 )( Therrian, 1981 )(C. Zhou & Chan, 2001 )(A. K. Jain & Far-

okhnia, 1991 )( Li et al., 1997 )( Hong & Brady, 2003 )(Faraz Janan &

rady, 2015 ). In our current implementation, we have elected to 

se a method that works well in practice, is robust, and efficient 

 Achanta et al., 2010 ). We use Simple Linear Iterative Cluttering 

SLIC) to provide a piecewise constant approximation to the sur- 

ace locally in the form of small texture bound patches called ‘su- 

erpixels’. This may be replaced by alternative segmentation meth- 

ds that are able to segment the entire breast region. A pipeline 

ethod that also uses SLIC segmentation for mammographic image 

nhancement is given in ( Chu et al., 2015 ). We note that all seg-

entation algorithms, whether based on computer vision methods 

r low-level image processing techniques, often result in over or 

nder-segmentation. This is especially the case in the presence of 

xtensive “texture” in the form of curvilinear ductal/stromal struc- 

ures such as in BI-RADS C. The RICE multi-scale iterative routine 

ackles over-segmentation by combining small facets belonging to 

he same region. It also deals well with under-segmentation by 

reaking down larger regions into smaller superpixels. Each seg- 

ented region { R i S } i =1 ... n is identified separately for further pro- 

essing. 

.5. Constant estimation of breast regions 

The second step is to compute the mean value for each seg- 

ented region and generate segmentation masks. For a segmented 

ammographic map V ( ̄x ) , where the maximum size of a patch is

pecified as a prior, we generate a mean density map of super- 

ixels S( ̄x ) as shown in Fig. 3 (b). The goal is to create an output

ap L ( ̄x ) in which ROIs are locally enhanced, whereas those of 

esser clinical interest is suppressed. This embodies the fact that 

reast density, as computed in VBD, is a physiological parameter 

hat reflects the breast tissue composition, as opposed to a bright- 

ess value in which tissue composition, exposure time, tube volt- 

ge, etc are confounded. In Fig. 3 (c) we show how the piecewise 

onstant approximation of segmented regions using its mean value 

orrespond to the VBD map. 

We note that the size of the abnormality does not significantly 

mpact the performance, due to the iterative nature of the algo- 

ithm (see below). For instance, an abnormality that is over seg- 

ented in one SLIC iteration would be re-combined in together in 

he following iteration, as described in Section 2.1 . 

.6. Of local neighbourhood 

The third step is to estimate the density of the tissue surround- 

ng each region. Suppose that each smaller region R i is associated 

ith a constant mean value of the ith region. Then the segmented 

egion S( ̄x ) results from binarising and dilating using a circular 

ntegral Invariant (II) ( Manay et al., 2006 ) to capture the neigh- 

ouring tissue. We refer to (Faraz Janan et al., 2015 ; Faraz Janan &

rady, 2013 ) for a detailed explanation of how II may be adapted 

s an information handler for neighbouring tissue. II adapts accord- 

ng to the shape and size of an ROI, an expedient that could be

sed in several ways beyond the purview of this work. II provides 

n extended region R + 
i 

which includes the ROI R i and its immedi- 

te surroundings. The mask of the immediate surroundings is: 

 ( R i ) = R 

+ 
i 

− R i (1) 

The mean density of the neighbourhood is μN 
i 

, for the R i by μ0 
i 

here N stands for the neighbourhood and 0 stands for the region 

n question. Volumetric density V R i (in mm 

3 ) for each R i is given 

y: 

V R i = δO 
i 

(
x, y, ˙ d 

)
d x d y d ˙ d (2) 
5 
Where ˙ d is the density of V | δO 
i 

at { ( x j , y j ) : j ∈ R i } j=1 ... M 

. 

 j , y j are the spatial coordinates for the segmentation mask. We 

efer the reader to Fig. 4 for a schematic explanation. δO 
i 

is the sur- 

ace volume of a region in a given density map. 

.7. A local contrast map 

The fourth step is to compute a local contrast map L( ̄x ) at all

oints around the boundary of a segmented region R i such that 

he ROI is enhanced. This is a subtraction process that imposes the 

ollowing two conditions: 

1) For any R i , if the mean of the background tissue has greater 

density than the region itself, then it is considered to be normal 
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Fig. 5. (a) A mass with connected components (b) Visibility and the margins of the 

mass significantly improved after applying RICE. 

Fig. 6. A small circular region around 7 pixels in diameter before (left) and after 

(right) the application of RICE. The index specifies the density of the pixel in Vol- 

para density maps. 
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Fig. 7. (a) a segmented region; (b) neighbourhood of the region in (a); (c) nor- 

mal density distribution of the region (a); (d) two-peak density distribution of the 

neighbourhood (b). 

Fig. 8. (a) The scrap-mark artefact towards the right of an ROI; (b) the density pro- 

file extracted along the yellow line for RICE processed and the original image on a 

normalised scale. 
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tissue. In this case, subtract the mean μO 
i 

of the region from 

each pixel in the region. 

2) For any, R i if the background has a lower density than the re- 

gion; then the mean of the background μN 
i 

is subtracted from 

each pixel in the region. An offset is added for pixels resulting 

in negative numbers. 

L ( ̄x i ) = 

{
V R i − μN 

i 
⇔ μN 

i 
> μO 

i 

V R i − μO 
i 

⇔ μN 
i 

≤ μO 
i 

, i = 1 . . . n (3) 

Recalling Fig. 4 , the segmented region has a mean density of 

.8mm 

3 , whereas that of the surrounding region is 1.7mm3. After 

he first iteration of RICE, the resulting mean thickness of the re- 

ion is: 4.8 – 1.7 = 3.1mm 

3 . There is a high-density difference be- 

ween the thickness of the tissue and its surrounding, thus indicat- 

ng a focal density (labelled as Conf. A in the figure). Fig. 5 shows

nother example where the appearance of a confirmed mass is en- 

anced after all of the iterations of RICE. The example shows how 

ICE can effectively suppress normal parenchyma while preserv- 

ng the ROI. Fig. 6 shows a calcification (7 pixels in diameter), em- 

edded in a dense background with poor contrast, enhanced using 

ICE. A small regions of sufficiently high contrast are both picked 

p and amplified both by SLIC and by the iterations of RICE. A sim- 

le example of that is shown earlier in Fig. 1 a, where a microcal-

ificiation is a small region that stands out above the surrounding 

oise floor. Note that this is in part a consequence of us working 

ith VBD (and similar) density images: VBD makes the assump- 

ion that tissue is either “dense” (“interesting” in VBD speak) or 

fat”; however, the attenuation of a microcalcification is substan- 

ially greater – generally reckoned to be 20-30 times – that of “in- 

eresting tissue” (see (Highnam & Brady, 1999)), and so microcalci- 

cations appear much “higher” than their cross-section diameter in 

 VBD image. Fig. 1 b shows that the thin, high region is preserved

hrough the iterations of RICE. In Fig. 6 we show another exam- 

le of a relatively small region in a poor contrast region enhanced 

onsiderably. 

Fig. 7 shows a region and its surroundings, together with the 

orresponding density histograms. While the segmented region in 

a) has a normal density spread; the surrounding region in (b) has 

 two-peak distribution. A scrap-mark is an extended line resem- 

ling an edge resulting from the non-uniform intensity/density dis- 
6 
ribution of the neighbouring tissue. This could affect the apparent 

tructure of the breast anatomy inducing unwanted new informa- 

ion. The background suppression process may result in an arte- 

act which we call the ‘scrap-mark effect’. Fig. 8 shows a typical 

xample of a scrap-mark artefact. In the image, the effect is ob- 

ious in the form of a dark edge passing vertically close by the 

ass towards its right side. The figure shows two density profiles 

xtracted on a normalised scale from the original image and the 

rocessed image after the first RICE iteration. From the graph, it 

an be seen that the contrast of the ROI has been significantly en- 

anced in the RICE processed image. However, an unwanted arte- 

act in the form of a small peak has emerged. This effect is miti- 

ated using an iterative mechanism, explained in the late r section. 

.8. Suppression 

Finally, steps 1-4 are performed iteratively at multiple scales of 

I diffusion. These steps are formulated into a tail-recursion model 

erived in the next section (i.e. The Iterative RICE Model), which is 

xplained briefly here for completeness. In the RICE model Step-1, 

 and 4 remains the same. However, in Step-3 we begin with small 

cales of II diffusion to capture the immediate neighbours, gradu- 

lly progressing to larger scales. This iterative mechanism corrects 

ny under- and over-segmentation, as well as preserving the edge 

hapes and subtle details of dense regions (i.e. ‘interesting tissue’). 

Relatively small scales of ROI diffusion define the shape of a 

egion, thereby capturing fine details. Larger scales deal with the 
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Fig. 9. Reduction in tissue density for a mass in Fig 9 over iterations. 

Fig. 10. Normal tissue suppression over several SLIC iterations. 
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oarse level information by helping the normal parenchymal sup- 

ression, overcoming the scrap-mark effect and helping to merge 

uperpixels belonging to the same region. 

Fig. 9 shows that the mean density of a mass gets closer to the 

round truth reduced over 4 iterations. Moreover, by using the ‘El- 

ow method’ ( Kodinariya & Makwana, 2013 ) borrowed from data 

lustering application, we find that 4 iterations effectively suppress 

he normal parenchyma while maintaining the shape of a given 

picular region. This assumption is supported by our results from 

ig. 15 in the results section. In the Fig. 10 , we illustrate an exam-

le of the embedding process, followed by the enhancement us- 

ng our method. The row with SLIC segmentation (before and af- 

er enhancement) illustrates the effectiveness of our method. The 

ast column is composed of an extremely dense patch; hence diffi- 

ult to differentiate between the mass and dense areas within the 

atch. 

After the completion of each iteration, we combine residue 

aps L ( ̄x j ) from the current and earlier iterations along with a 

eighted version of the VBD map. The output of the complete pro- 

ess is called the ‘RICE map’. The summation of VDB/mammogram 

n the averaging process helps to capture the full entropy infor- 

ation in a given mammographic image, where even the slightest 

etails are retained. However, the iterative subtraction and aver- 

ging enforce a weighting scheme that benefits focal densities and 

enalises the uninteresting normal parenchyma. The essence of the 

ecursive process is those focal densities persist over multi-scale it- 

rations to become more visible with an increased contrast to the 

ackground. A fuller description of the RICE model and its mathe- 

atical derivation is given in the next section. 

. Iterative model 

The iterative model is the core of RICE. It recursively com- 

ines images that have been enhanced in previous iterations with 

 weighted sum of the original image at multiple scales of diffu- 

ion. For each iteration, the output image is comprised of three 

lements: 1) the newly processed RICE image; 2) enhanced images 
7 
rom previous iterations; 3) the original image that is weighted by 

 decreasing exponential value β . The input image for each iter- 

tion is the output of the previous iteration. After the final itera- 

ion, each pixel is subjected to a majority voting for corresponding 

ixels through the enhanced images produced during every sin- 

le iteration. For any mammographic image I (either the VBD map 

(x) used earlier, or an intensity-based image, or synthetic mam- 

ograms) the enhanced image I RICE is generated by the following 

rocess over n iterations. 

.1. Iteration 1 

We suppress the background tissue to attain the residue map 

 1 , as explained in steps 1-4 above. 

 → r 1 (4) 

I. Rescale r 1 with ∝ 1 , such that 

ax ( r 1 ) → max ( I ) 

in ( I ) = min ( r 1 ) = 0 (5) 

II. From these constraints, we determine α1 as: 

 1 = 

max ( I ) 

max ( r 1 ) + 0 . 0 0 01 

(6) 

III. We then generate the enhanced map e 1 

 1 = β ( I + ∝ 1 r 1 ) , f or β = 0 . 5 (7) 

The scaling factor β is a tuning parameter that may be adjusted 

ccording to the type of mammographic imaging modality used to 

enerate the RICE maps. We have found that a value of β = 0 . 5

orks well for VBD maps. However, this value can be adjusted 

f the method is applied to intensity images or synthetic mam- 

ograms generated from DBT stacks (for instance, Hologic C-View 

 Greer, 2014 )). 

.2. Iteration 2 

The same process is repeated to generate the enhanced map 

 2 after the second iteration from the residue map r 1 , scaled by 

 2 , which is: 

 2 = β2 I + β2 ∝ 1 r 1 + β∝ 2 r 2 (8) 

here , ∝ 2 = 

max ( e 1 ) 

max ( r 2 ) + 0 . 0 0 01 

(9) 

r 2 denotes the new residue map after the second iteration. We 

erive e 2 as follows: 

 2 = β( e 1 + α2 r 2 ) 
 β( β( I + α1 r 1 ) + α2 r 2 ) 
 β2 I + β2 α1 r 1 + βα2 r 2 

(11) 

.3. Iteration 3 

This is repeated, for example: 

 3 = β3 I + β3 ∝ 1 r 1 + β2 ∝ 2 r 2 + β∝ 3 r 3 (12) 

.4. Iteration n 

 n = βn I + βn ∝ 1 r 1 + . . . + β∝ n r n (13) 

 n = βn I + 

n ∑ 

i =1 

βn −i +1 ∝ i r i 

From this, it is possible to estimate the amount of breast 

arenchyma that has been suppressed from the original image, and 

n theory to recover a reasonable estimate of the original image. 
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.5. Scale-space analysis 

Since 0 < β < 1 it follows that β → 0 rapidly, therefore we may 

pproximate ∀ n > m, βn = 0 . 

ean { e n } = 

1 

m 

m ∑ 

i =1 

e i 

= 

1 

m 

m ∑ 

i =1 

β i I + 

m ∑ 

i =1 

β i +1 α, r (14) 

Consider the first term: 
 

1 

m 

m ∑ 

i =1 

β i 

) 

I = 

(
1 

m 

(
1 − βm −1 

1 − β
− 1 

))
I = 

(
1 

m 

(
β

1 − β

(
1 − βm −1 

)))
I (15) 

Since we set β = 

1 
2 , β = ( 1 − β) . Hence the term essentially 

quals 1 
m 

I . We now derive the second term. We can re-group the 

erms by α j r j . This can be written as: 

1 r 1 
m ∑ 

i −1 

β i + α2 r 2 
m ∑ 

i −2 

β i + α3 r 3 
m ∑ 

i −3 

β i + . . . 

m ∑ 

i =1 

β i 

)(
α1 r 1 + α2 r 2 ( 1 − β) + α3 r 3 

(
1 − β − β2 

)) (16) 

Assuming that the term 

m ∑ 

i =1 

β i ≈∼ 1 shows that the second term 

s a weighted sum of the terms α1 r i in the ratios 1:1/2:1/4:1/8..1/n. 

This illustrates that for a sufficient number of spatial scales of 

LIC, almost none of the entropy information from within a mam- 

ogram is lost, while at the same time it successfully suppresses 

he local parenchyma and estimates focal densities. The focally 

ense regions that persisted over multiple scales are enhanced, 

hereas the normal parenchyma is effectively suppressed (not en- 

irely removed). 

.6. The final step 

Finally, to generate the output, I RICE , we apply a function ∅ , 
hich could be majority vote (or mean, median) for each pixel 

hrough every e i . The majority voting process mitigates the scrap- 

ark effect. 

 RICE = ∅ 
(

lim 

i =1 → n 
e i 

)
(17) 

.7. SLIC regularisation 

Note that this step is only relevant if SLIC is used to segment 

egions in the RICE model. SLIC’s regularisation coefficient δ con- 

rols how regular (hexagon) or deformable the shape of a super- 

ixel should be used ( Vedaldi & Fulkerson, 2010 ). SLIC uses this as

 seed value to form clusters of similar pixels. In practice, it suf- 

ers from over-segmentation when applied to images with complex 

patial and textural regional differentiation. This has a direct im- 

act on the estimation of the local neighbourhood of segmented 

egions, especially in the first two iterations where most of the 

normal’ parenchyma is suppressed. If δ is estimated sensibly, this 

ot only reduces the number of RICE iterations to produce good re- 

ults but also preserves the borders of the ROI more effectively. For 

he first iteration, we use the median of the original image, δ1 = ̃

 I , 

hereas for the remaining iterations we use the median value of 

he output images from the previous iterations. This enables us to 

et up an automatic balance between the deformability of a super- 

ixel and its size. 

i = 

˜ e i −1 (18) 
8 
pplied RICE to VBD maps obtained from the ‘Manchester 50/50 

ataset’ (a subset of the PROCAS study samples ( Astley et al., 

018 )( Sergeant et al., 2012 ) provided as part of the ASSURE 

roject). The set of cases (VBD maps) includes 50 screen-detected 

ancers and an equal number of controls, all anonymized, and all 

ith bilateral CC and MLO views. They were all imaged using a 

linical GE Senograph Essential. The mammograms were converted 

o VBD maps using the Volpara Research Platform 1.0. In an ob- 

erver study, all focal densities (cancer or non-cancer) were en- 

anced as expected. More precisely, all the dense regions were cor- 

ectly identified; but with a high false positive rate. To reduce the 

umber of false positives, an in-house mass detection algorithm (F. 

anan et al., 2014 ) was applied to detect the masses in the mam- 

ograms. We stress that the objective of RICE is not mass de- 

ection per se, rather mammographic image enhancement, which 

ay aid CADe, and on which it performed well. In the results 

hown below, masses were correctly detected and segmented in 

6 mammograms using (F. Janan et al., 2014 ); however, in 4 im- 

ges (2 dense, 1 fatty and 1 moderately textured) masses could 

ot be identified either visually or by a locally deployed computer- 

ided detection (CADe) system. Evidently, a state-of-the-art system 

or detecting/proposing soft tissue masses (e.g. from ScreenPoint 

edical or iCAD) could replace this step. 

Qualitatively, contrast enhancement of dense regions is not 

chieved at the expense of tumours in fatty regions of the same 

reast. To be visible on a mammogram, a typical tumour has a 

igher density than the surrounding tissue. Fig. 11 shows an ex- 

mple of a low-density neighbourhood in an otherwise BI-RADS D 

reast. The tumour is situated close to the chest-wall, away from 

he breast peripheral region (red arrow). The central region is uni- 

ormly dense (it is BI-RADS D) and is reported to be normal tissue. 

olpara density maps suggest that the breast inner region around 

he centre, which is normal dense tissue, is far denser than the 

ass (refer to Fig. 3 for actual density values). As can be seen, in

his case, RICE effectively suppresses the dense tissue while en- 

ancing the visibility of the tumour. We re-emphasise that RICE 

nhances the ROI; it does not classify the enhanced region as a 

ass. 

A fundamental limitation of density estimation using RICE, or 

ny other method that relies on 2D mammographic modalities, is 

he impact of breast thickness on tissue density. Breast have vari- 

ble thickness when compressed in a mammography machine. To 

nd the density of an ROI, we subtract the density of the neigh- 

ouring tissue from it. We base this on the assumption that the 

ensity of normal tissue above and below the ROI is approximately 

he same as that of the immediate neighbourhood. Based on this 

ssumption, while estimating the ROI density and subtracting the 

eighbourhood, we also subtract an equal amount of normal tis- 

ue that substitutes the ROI in the neighbourhood–thus the den- 

ity estimate of ROI should be lower than that of the actual tissue. 

ig. 12 is a sketch of the process. This has minimal effect on fatty 

nd moderately dense breast. However, it could affect ROI density 

stimation in a very dense breast by subtracting too much of the 

urrounding tissue. A means to include breast thickness into the 

odel, for example, formulating a certain ratio that could reflect 

pon the thickness of the ROI and the breast, could compensate for 

his effect. Our method accurately detects focal densities in highly 

ense breast. 

To test RICE in unmasking tumours in a dense breast, we ex- 

racted a clinically confirmed mass and embedded it into four 

ypes VBD maps categorised as Volpara Density Grades (VGD). The 

DG score strongly correlates with the actual BI-RADS classifi- 

ation ( Lee et al., 2015 )). Furthermore, this experiment tests the 

erformance of RICE in identifying and suppressing the normal 

arenchyma surrounding the ROI in all density classes. The exper- 

ment is as follows: 
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Fig. 11. The density map is enhanced by suppressing normal dense parenchyma 

while enhancing the visibility of tumour in a lighter background (highlighted with 

a red arrow). 
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Fig. 12. A demonstration of density estimation error. 
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1 First, embed a mass into various VBD maps labelled by their 

VDG scores. 

2 Apply RICE to suppress the normal parenchyma and quantify 

the density of the embedded mass in the enhanced mammo- 

gram. 

3 Assess the consistency in the density of the mass in enhanced 

RICE maps throughout all VDG categories. 

Several factors could impact the consistency of the mass density 

n the enhanced RICE maps. These include: the density and texture 

f the host breast on the shape of the segmented region; the thick- 

ess of the host mammogram; the non-biological basis of the em- 

edding procedure and so on will affect the density of the mass 

n enhanced RICE images. As the volumetric density for breast 
9 
arenchyma across the BI-RADS categories could vary by an order 

f magnitude, we expect the density of the mass in the enhanced 

mages to show little variation across categories, and to be within 

n acceptable margin of error. Fig. 14 shows the results of inserting 

 known mass into 24 VBD maps (6 from each VDG categories). Af- 

er the fourth iteration, the density of the mass is consistent across 

ll four categories with a mean mass density of 3.18mm 

3 (against 

he ground truth 3.96mm 

3 ), variance 0.75mm 

3 and the standard 

eviation of 0.87mm 

3 . Fig. 15 shows the density of the inserted 

ass after 4 RICE iterations in all VDG categories. This is the mean 

ensity value of the mass extracted from 6 VBD maps per category. 

rom Fig. 14 and Fig. 15 we conclude that RICE produces consistent 

esults for suppressing normal parenchyma and in estimating the 

olumetric density of an ROI in all breast density classes. It implies 

hat were we to embed a mass into a dense mammogram/VBD; 

ICE would unmask and estimate density effectively, thus sharply 

educing the risks of MISS 1-3. 

Although in this paper we focus on the application of RICE to 

ammographic images, nevertheless, our experiments suggest that 

ICE can be applied beyond mammography. Fig. 16 shows a scan- 

ing artefact where a metallic circuit is imaged in the mammo- 

ram. RICE significantly improves the contrast and visibility of the 

ircuit. We also applied RICE on other mammographic modalities, 

n particular, unprocessed DICOM mammograms (normal inten- 

ity maps); synthetic mammograms generated from reconstructed 

tacks of DBT scans (similar to C-View ( Greer, 2014 )); and SAR im- 

ges ( Tromans et al., 2012 ). 

As above, there is no notion of quantitative volumetric breast 

ensity in the images produced by any of these modalities. Despite 

hat, we have found consistent and significant improvement in the 

isibility of dense parenchyma in these images. Fig. 17 shows a few 

xamples where RICE enhances the contrast and improves the visi- 

ility of dense regions in routine mammograms. Fig. 18 shows RICE 

pplied to synthetic mammograms; and in Fig. 19 RICE is applied 

o SAR images (C. Tromans et al., 2012 ; C. E. Tromans et al., 2012 ). 

An important question the reader may ask is, how well does 

ICE perform with respect to the abnormality size? There are two 

spects to consider: size; and density. The former might be ex- 

ected to impact, for example, on the SLIC step Section 2.1 ). The 
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Fig. 13. Examples of RICE enhanced Volpara density maps. 

Fig. 14. Estimated density of a mass inserted in 24 VBD maps (6 from each VDG 

category) after several iterations of RICE. It can be seen hat the density of the mass 

is consistent after the fourth iteration across all VDG categories. 
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Fig. 15. The mean density of the mass for VBD maps from each VDG category 

through four iterations of RICE. 

Fig. 16. RICE improving the contrast and the visibility of a non-mammographic tex- 

ture. 
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atter impacts, inter alia , local contrast, and so may impact detec- 

ion. Evidently, an abnormality of size (say) 1 pixel, and with mini- 

al contrast to dense surroundings, would be treated as noise and 

ould not be enhanced. For the density, the recursive nature of 

ICE ensures that a sufficiently dense region is maintained, even 

f it is small, such as a microcalcification ( Fig. 1 and Fig. 6 ). Con-

ider the case where both the size and the contrast of (say) an 
10 
mplanted region are reduced. At a certain point, as the contrast of 

he implanted region and the neighbourhood reduces, the region 

ould no longer be picked up in Step 1 ( Section 2.1 , SLIC). There

s nothing RICE can do in such a case. However, when a region is 

icked up by SLIC as a candidate ROI, would RICE suppress it? This 

s addressed in Sections 2.3 , 2.4 and, more importantly, in Section 

, which is the core of RICE. Here the key parameters are α1 , β . 

he first of these is defined in Equation (5) , while the latter is set

o a value of 0.5 for VBD depth maps ( Equation 7 ). The subsequent

nalysis in Equation (13) and the Scale Space analysis (Equations 

4, (15) show that a region, of sufficient size to be picked up in 

LIC or sufficient contrast but small size will be preserved in RICE. 

e include a further example ( Fig. 20 ) with intermediate steps to 

how that RICE does not smooth the margins of a malignant mass. 

To confirm that the enhancement process suppresses what we 

onsider is normal parenchyma encompassing a region of interest, 

e test the consistency of our method using a matric we call tis- 

ue to background ratio (TBR). We compare ROIs in post RICE re- 

ions for Volpara and SAR, both of which are quantitative images 

nd provide an approximation of mammographic density per pixel. 

lease refer back to Fig. 4 in section 2.3 to see how TBR is com-

uted. In Fig. 21 we can see that TBR for both Volpara and SAR 

mages is very similar, despite the composition of these images 
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Fig. 17. RICE applied to intensity based mammograms(DICOM x-ray images). 

Fig. 18. Synesthetic mammograms generated from DBT (left), enhanced using RICE 

(right). 

Fig. 19. SAR images (left), enhanced using RICE (right). 

Fig. 20. Effect of RICE on tumor margins. (a) A tumor patch; (b) Piece-wise con- 

stant estimation after the first RICE iteration; (c) Red is the boundary drawn using 

an inhouse method ( Janan et al., 2014 ), green is the ground truth; (d) The segmen- 

tation boundary overlaid on the original image. 
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11 
nd the methods used to compute density are very different - uses 

istinct physics models to estimate independent x-ray attenuation 

bsorbed per pixel. In Fig. 22 we further evaluate the consistency 

or 15 masses and find that the TBR scores closely agree with each 

ther. 

Next, our method enables us to compute a single focal density 

core for the whole breast by aggregating densities of the tissue 

emaining after enhancement by our method in each breast quad- 

ant. Fig. 23 (a) and (b) shows a bilateral pair, that masks an 18mm 

rade 5 invasive ductal carcinoma detected in the right breast from 

 ‘prior’ exam. The breast is extremely dense and was classified 

s BIRADS D, having 30.2% of mean volumetric breast density and 

 Volpara VDG grade 4. This is an interval cancer and perhaps 

should have been detected’ when the densities in the right breast 

egan inexorably to rise. We analyse this clinical case using RICE to 

uantify focal densities in the four classical breast quadrants to as- 

ess the change in densities over time. As usual, we automatically: 

etect the breast boundary; find the nipple; identify the skin-line 

buffer between the skin and the breast region); and divide the 

reast region into 4 quadrants based on taking the nipple as a ref- 
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Fig. 21. Comparison of TBR of 0.68 for Volpara (left), and 0.62 for SAR (right). 

Fig. 22. TBR scores for 15 lesions, Volpara vs SAR, showing that our method con- 

sistently suppresses the normal tissue surrounding ROIs. 
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Fig. 23. Quantification of focal density (FD) scores for bilateral mammograms. 

Fig. 24. Focal density analysis on time series data using our method, confirming 

the laterality of cancer (right). 
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rence. Fig. 23 (c) and (d) shows that the right (infected) breast 

as a higher focal density (FD) score than the left (5.16 vs 6.86), 

hus confirming the laterality of cancer. 

Fig. 24 shows a pattern of change in focal densities for the left 

reast over time. Moreover, what is unclear in the clinical report, 

ut is clear from the FD analysis after applying our method, is that 

uadrants Q1 and Q4 are accumulating asymmetries in the right 

reast years before cancer appears. This suggests that there is a 

otential for FD measure to predict the likelihood of a developing 

bnormality related to the asymmetrical accumulation of densities 

n the breast over time. is an image enhancement method, that has 

een developed primarily for mammography and applied to den- 

ity maps, but which has the potential to extend to other imag- 

ng applications. It has a strong mathematical basis that ensures 

trictly content-based image enhancement. It significantly aids the 

etectability of dense structures, such as focal densities, masses 

nd calcifications inside mammograms. Focal densities are the key 

o assess focal asymmetry, which is the core of the new BI-RADS 

ensity classification lexicon. RICE works effectively on regular and 

ynthetic mammograms, as well as on SAR and Volpara volumetric 

ensity maps. RICE enhances the visibility of focal densities in all 

olpara VDG categories (which strongly correlate to BI-RADS breast 

ensity classification). In extensive experiments, RICE can consis- 

ently unmask tumours falsely embedded in dense breast. 

It enhances focal densities by suppressing normal parenchyma, 

hus reducing the risk of missing cancers that are not visible be- 

ause it is masked by dense tissue (MISS-1) or its visibility is dis- 

racted by other dense tissue (MISS-2). The parenchymal suppres- 

ion reduces the risk of interpreting cancers wrongly due to over- 

apping of other tissues (MISS-3). 
12 
Though we are aware of the impressive contributions that deep 

earning have made generally to (medical) image analysis, it is not 

 panacea nor does it (or can it) replace everything that has been 

one using previously developed methods. Of course, there have 

ecently been a stream of exciting papers applying machine learn- 

ng to mammography, for example by Rodriguez and colleagues 

 Carioli et al., 2017 ; Rodríguez-Ruiz et al., 2019 ; Sasaki et al., 2020 )

egarding Transpara ( Le et al., 2019 ) 

A fundamental challenge of applying deep learning to the prob- 

em at hand is the small size of carefully curated databases for 

hich “ground truth” (with the consensus view of a number of 
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nformed observers) is available. It has been claimed, and repeat- 

dly reasserted, that machine learning methods such as U-Net are 

vailable in such a case, though this has never been shown for- 

ally, and the recent work on Deep Convolution Framelets (Han & 

e, 2018) makes explicit the relationship of methods such as U-Net 

nd the classically understood (discrete) wavelet transform, as well 

s some of the limitations of U-Net. It will be remiss of us not to

xplore machine learning as we further develop our work; but this 

as not the focus of the present study. 

The current pipeline is illustrative and each of the steps could 

e replaced without changing the overall impact. For example, the 

egmentation method, currently based on SLIC, could be replaced 

y a deep-learning method. In an extended, retrospective observer 

tudy we aim to use our method to predict the laterality of breast 

ancer before it develops. This will help in localizing the future risk 

f developing cancer, in particular, those associated with mammo- 

raphic focal densities, and thus enabling early detection and re- 

ucing the mortality rate. 
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